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Formulas are presented which make it possible to trace the formation of a limit
cycle at a merged focus using coefficients in the right-hand sides of dynamic
systems,

In merged dynamic systems specified in the phase plane by different analytic ex-
pressions on opposite sides of some line in that plane (1], the "merging line” may cont-
ain points whose neighborhoods are similar to those of the equilibrium states of smooth
systems. One of such points is a merged focus whose spirals consist of arcs lying on
different sides of the merging line. The merged focus, ltke that of the smooth system,
may change its stability when parameters of the system are changed, And, as in the
case of the smooth system, the stability region boundary in the parameter space can
be either "safe” if at transition through it from the stability to the instability region
a stable limit cylce is originated at the focus, or "unsafe” when an unstable cycle con-
tracts to it, If it is possible to find general integrals for merged systems, the form of
the boundary is determined by the method presented in [2).Below we describe a proced-
ure which uses for this purpose only several first termsof expansions in series of the right-
hand sides of merged systems,

Let us consider a system consisting of two analytic systems

I'=P1(J,y), y.=Ql(zt y)v 2>0
z =P’(x1 y)l y. =Q2 (3, y)v z<0

merged on the y -axis, Conditions
Py(0,0)=Py(0,0) =0, Q1(0,0)Q;(0,0 <0

3P1(0,0) 9.0, 00<0, 22220 g.00,0)>0
dy oy

ensure that the stucture in the neighborhood of the coordinate origin is of the merged

focus type and, also, isolate the basic case in which the point (0, 0) does not repres-

ent the equilibrium state for any of the merged systems, as well as that the isoclines

of the system vertical slopes reach the coordinate origin without being tangent to the

¥ 'axuo
These conditions make it possible to represent the system as

z.=alz+aly+P1'(zvy)o y =6+ (= 1, z>0
T =cz+cy+ Py y), ¥ =3+Q (®y =<0

(220 < 0,¢cd >0, bd<0)
where functions Py’, Qy', Py’ and Qs' can be expanded in series beginning with terms
of an order higher than stated,
After the substitution
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FF=—(la)z, Y=(/a)z+y, >0 D
x°=(d/cﬁ)z, y°=(¢1/t.):c+y, x<0

the systern assumes the form
Z=—by+ P @y vV=0+0"(zy, >0
z =dy + P, (z, y}, y=d+ Q" (=, ¥, 20

where functions P,", Q;", P,” and @," can be expanded in series beginning with
terms of an order higher than stated, and indices at new variables have been omitted.
Reducing each system to a single equation and expanding the right-hand sides in
series, we obtain
dz [ dy = — y + g202* + 817y + gy + ... +o1e7y® +oat® +... + )
gy + ..., 2>0

dz [ dy = y + heg2? + hyay + hogy® + . o+ hyszy® -+ hogy® .. -
ot + ..., 2<L0
where only terms whose coefficients appear in final formulas are shown,

Let us consider the pointwise mapping ¥; = y; (yo) (see Fig. 1) of the negative
semiaxis ¥ into the positive one using trajectories of the "right-hand” system and the
mapping ys = y; (o) using trajectories of the "left-hand” system. To construct
these images we solve Eqs, (2) which begin on the y -axis for small in absolute value
¥ =y,, representing these in the form of series in powers of ¥ and y,. In the
obtained solutions we set z = 0, and obtain equations which we use for determining
functions y; (ye) and y, (y,) in the form of series in powers of y,

Y1 = —Yo + ¥afosho + . . . F 3/ 135 (40 202® + 45 Zopkes +
9211808 -+ 18 ga0 + 9810 + 27 god yo* + . . .

Ys = —Yo — Yshoayo® + . . . 1+ 2/ 135 (— 40 ko -+ 45 hoyhoy —
Ohyihog - 18hgg -+ Shyg — 2The) yo* + . . .

We compose the remainder
f o) = y1 (Wo) — 2 (o) = s ae® + ...+ ¥/ s gyt ...

where the coefficients at y2,. . ., yo',. . . are the remainders of related coefficients
of series y; and y,.

Simple geometric considerations show that function f (y,) is of the same sign for
¥o > 0 and y¢ << 0. Hence the ordinal number of the first nonzero coefficient is
even, Ifitijs positive, then for small |y, | we have f(yo) >0 and the focus is
stable, while when it is negative, the focus is unstable. This holds for clockwise
motion (4> 0) around the focus; when the motion is in the opposite direction (d
< 0) the reverse is true, When all coefficients of the series f(y,) are zero, f (yo) =

0 and the equilibrium stats is a "merged center”,

If we now assume that the system depends on parameters (the right-hand sides of
both merged systems are analytic functions of =z, y , and of parameters), then the
coefficients of series f (yo) are functions of these parameters, Since a change of

the sign of a; results in the change of stability, the conditiona,; = 0 determines in the
parameter space a surface which is the stability region boundary (at the boundary both
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agand oy vanish),

Let o4 %= 0 correspond to parameters at the bound-
ary itself, The equilibrium state of such parameters
is determired by a focus whose stability depends on
the sign of @, and the direction of motion along traj-
ectories, If the focus s stable, then the boundary is
safe, as in the case of a smooth system, and when it
is unstable, the boundary is unsafe, The proof of these
statements is similar to that appearing in [3]in the
case of an analytic system.

Thus the determination of the stability region bound-
ary and of {ts form involves the following: 1) carrying
out transformation (1); 2) substituting a single equation
for each merged system and expand their right-hand
Fig. 1 sides in series, retaining only the terms that appear in
(2), and 3) determining a3 = gox -+ hoe

@y = (3803803 1 Zu1os + 2820 + 812 + 3ea) —
(Shoshes — hyyhos — 2hgy + hyy — 3hey)
where the evident simplifications are justified by that a, is only required when
Qg == 0:
The stability region boundary is determined by the equality «; = 0 and the reg-
ion of stabfiity (instability) is determined by the inequality day >0 (< 0); when

at the boundary dag > 0 (< 0) , it is safe (unsafe).
Example, Letusconsider an on-off servomechanism working under conditions

of constant speed of the input shaft (4],
The equations of motion are
== Mo—2),2>0 2 =M@ —0), 20

where M (v) is the mechanical characteristic of the motor (dependence of torque
on velocity o), @ >0 is the input shaft speed, and = is the mismatch,
We approximate the characteristic of the motor by the cubic parabola

M@)=mB+ mf+pv+r, m0, ng0, p>0, r>90
The servomechanism that comesponds to this equation is defined by
=y, y=—m@-—yP—n@—yP—plo—v)—r >0
=y y=m@y—0l+tny—op+ply—o)tr 20
For not very high o its equilibrium position (0, 0) is at the merging line.
The stability region boundary in the parameter plane ©%,p is defined by the
curve p = (mnet + 3mAe) / (w? — r)
Above the boundary line duy < 0 and the equilibrum state is represented by
2 merged unstable focus, below it day > 0 and the focus is stable, At the stability
region boundary

day = — 2(np + 3mr)/ M (0) >0
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The boundary is safe,

The author thanks N, N, Bautin for discussing this work.
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